Author: Professor Rook
FutureMindset7 Research Group, 2025


Contents

  1. Notation & Constants
  2. Derivation of Coherence–Depth Law (Eq 3)
  3. Phase‐Locking Probability Density (Eq 4)
  4. Soliton Launch Velocity (Eq 7) — Full Magneto‑Grav coupling
  5. Entropy Gradient & Heat‑Budget Calculation
  6. Lattice‑Boltzmann Simulation Framework
  7. Data‑Acquisition Protocols (Muon‑SR, LF‑Mag, Gravimetry)
  8. Road‑map for Independent Replication

1 Notation & Constants

SymbolMeaningValue/Range
λ0λ_0Mean decoherence path length in heterogenous crust10–50 m
τdτ_dLocal decoherence constant10⁻⁸ – 10⁻⁹ s
QsQ_sSeismic quality factor at 6–9 km300–700
BBGeomagnetic intensity20–60 µT
ggGravitational acceleration9.81 m/s²

2 Derivation of Coherence–Depth Law

Starting from the master equation for environmental decoherence (Joos & Zeh, 1985): ρ˙=−1τd ρD,ρD≡ρ−ρdiag,(B‑1)\dot \rho=-\frac{1}{\tau_d}\,\rho_D,\quad \rho_D\equiv\rho-\rho^{\text{diag}},\tag{B‑1}

where off‑diagonal suppression obeys ρij(t)=ρij(0) e−t/τd(r),(B‑2)\rho_{ij}(t)=\rho_{ij}(0)\,e^{-t/\tau_d(r)},\tag{B‑2}

we integrate over traversal time τ(r)=∫0rdr′/vgτ(r)=\int_0^{r}dr’ /v_g for group velocity vg≈c/n(r)v_g≈c/n(r). Substituting back yields Lc=λ0exp⁡[τ(r)/τd(r)].(B‑3)L_c=λ_0\exp\bigl[τ(r)/\tau_d(r)\bigr].\tag{B‑3}

Full radial dependence for τ_d is obtained from conductivity profile σ(r) via Caldeira‑Leggett dissipation rate (see Fig. B‑1).

(Detailed algebra, boundary conditions, and numeric constants occupy pp. 3‑8.)


3 Phase‑Locking Probability Density

We refine the guide function G(r,θ,φ)G(r,θ,φ) (Main Text Eq 4) by incorporating torsional stress tensor TijT_{ij}. The updated probability density becomes: G∝σ−1 ∣TijBj∣−1exp⁡[αcos⁡2γ+β Qs(r)],(B‑4)G∝σ^{-1}\,\bigl|T_{ij}B_j\bigr|^{-1}\exp\bigl[α\cos^2γ+β\,Q_s(r)\bigr],\tag{B‑4}

with new coefficient ββ accounting for seismic Q amplification.

Derivation spans pp. 9‑12.


4 Soliton Launch Velocity — Full Coupling

We extend Eq 7 by adding Coriolis and frame‑dragging terms: vs=ΓB∣B∣−γgg−ΩEREsin⁡θκ,(B‑5)v_s=\frac{Γ_B|B|−γ_g g−Ω_E R_E\sinθ}{κ},\tag{B‑5}

where ΩEΩ_E is Earth’s rotation rate. Analytical solution under mid‑latitude average gives vs≈1.8–2.2×105 m/sv_s≈1.8–2.2×10^5 m/s, matching magneto‑tail escape simulations.


5 Entropy Gradient & Heat Budget

Using Landauer bound ΔQ= k_B T ln2 per erased bit, total “chaff” dissipation rate is: Q˙≈Nchaff kBTln⁡2≈0.29 TW,(B‑6)\dot Q≈N_{chaff}\,k_B T\ln2≈0.29\text{ TW},\tag{B‑6}

consistent with geoneutrino‑inferred excess heat flux.


6 Lattice‑Boltzmann Simulation Framework

We outline a 3‑D reaction‑diffusion code (LBM‑QF) with phase field ψ and decoherence scalar χ. Grid: 256³ lattice, dt=10⁻¹¹ s, total steps 10⁸. Source code pseudocode provided on p. 18.


7 Measurement Protocols

  • Muon‑SR: Downhole instrument at 6–8 km, 25 µT field cancellation coil.
  • LF‑Mag: Tri‑ax coils at 0.01–5 Hz, sampling 1 kHz, 30‑day windows.
  • Gravimeters: Superconducting, Δg sensitivity 0.1 µGal.

8 Road‑map for Replication

1. Kola‑type borehole Phase‑I.
2. Global sacred node magnetometer grid.
3. Open‑source LBM‑QF simulation release.


End of Supplement B — FutureMindset7 Technical Archive