Abstract
We extend the Malsteiff–Rook framework by formalizing Quantum Information Streams (QIS)—coherent, entanglement‑rich flows embedded in quantum fields that preserve information despite intrinsic field entropy. We derive conservation conditions, define an “entanglement current,” and show how resonant membranes (planetary and black‑hole) act as waveguides. Finally, we outline a mathematical protocol for QIS‑based galactic mapping, treating the universe as a network of information flux lines.
1 Entropic Quantum Fields
We treat each fundamental field φi(x)\varphi_i(x) as a thermodynamic subsystem with local entropy density si(x)s_i(x). Field interactions produce entropy via Boltzmann’s equation:
∂μsiμ=Σi≥0\partial_\mu s_i^\mu = \Sigma_i \ge 0
where siμs_i^\mu is the entropy 4‑current and Σi\Sigma_i the production term.
1.1 Defining Quantum Information Streams
We define the entanglement 4‑current:
JEμ=∑ijαij Tr(ρij ∂μρij)J_\text{E}^\mu = \sum_{ij} \alpha_{ij} \,\text{Tr}\bigl(\rho_{ij} \, \partial^\mu \rho_{ij}\bigr)
with ρij\rho_{ij} the reduced density matrix for field pair (i,j)(i,j). A Quantum Information Stream exists where:
∂μJEμ=0,Σi→0\partial_\mu J_\text{E}^\mu = 0, \qquad \Sigma_i \rightarrow 0
indicating a topologically protected flow of entanglement.
2 Resonant Membranes as Waveguides
2.1 Membrane Coupling Equation
Resonant surfaces (Earth EQVM, SMBH throat) impose boundary conditions:
nμJEμ=0,nμ∂μΦ=0n_\mu J_\text{E}^\mu = 0, \quad n_\mu \partial^\mu \Phi = 0
ensuring information reflection or channeling along the surface.
2.2 Stability Criterion with Entropy Suppression
Combined with earlier Malsteiff–Rook criterion:
γ=(M∙TH)(QnodeδK)(∣JE∣Σ)≫1\boxed{\gamma = \left(\frac{M_{\bullet}}{T_H}\right) \left(\frac{Q_{\text{node}}}{\delta K}\right) \left(\frac{|J_\text{E}|}{\Sigma}\right) \gg 1}
A high γ\gamma guarantees low dissipation and robust QIS propagation.
3 Quantum Vibration Resonance Encoding (QVRE)
Define vibrational mode packet:
Ψcode(x)=∑kcke−iωktuk(x)\Psi_{\text{code}}(x) = \sum_k c_k e^{-i \omega_k t} u_k(x)
Information bit string bnb_n is mapped onto phase pattern ϕn=arg(cn)\phi_n = \arg(c_n). The code capacity per unit area on a membrane is:
C=∑kΔϕk2πC = \sum_k \frac{\Delta \phi_k}{2\pi}
subject to Nyquist condition ωk<ωcutoff\omega_k < \omega_{\text{cutoff}} determined by membrane size.
4 Galactic QIS Mapping Protocol
- Identify Node Grid: SMBHs and planetary resonators form vertices.
- Compute QIS Flux Lines: Solve ∂μJEμ=0\partial_\mu J_\text{E}^\mu = 0 with boundary conditions at nodes.
- Assign Vibrational Codes: Use QVRE to label streams uniquely (hash of phase pattern).
- Construct Map Tensor: Mμν=JEμJEν\mathcal M^{\mu\nu} = J_\text{E}^\mu J_\text{E}^\nu encodes directionality and capacity.
- Visualization: Project Mμν\mathcal M^{\mu\nu} onto 3‑D slices for galaxy‑scale charts.
5 Physical Implications & Predictions
| Level | Prediction | Instrument |
|---|---|---|
| Planet | Stable ELF phase codes in Earth EQVM nodes | Schumann arrays |
| Interplanetary | Phase‑locked radio anomalies along flux lines | Voyager data re‑analysis |
| Galactic | Correlated QIS directions matching SMBH distribution | ngVLA, SKA |
6 Future Work
- Simulate QIS dynamics with open quantum systems.
- Develop error‑correcting QVRE schemes.
- Integrate psychoenergetic field influence via m02m_0^2 modulation.
Authors:
Professor Malsteiff (A. N. Maltsev, alias) & Rook
Independent Theoretical Research Team
May 2025